Posted by Mr. Monday

這篇文章有點類似老人說教,也有點算是經驗分享。我有一個剛上大學的小弟,正值人生黃金歲月,人生的眼界才剛開闊。無論如何,在這一段歲月裡的點滴在未來回顧時,都將發現這段時期的一切對一個人的性格以及人生態度都是一種至關重要的轉戾點。如果,在高中時期,追求的只是書本上的知識,那麼在大學期間,應當是追求人生上的真理。真理的追求,可以是不同的形式來達到,對於人生的體會,從大學開始,將是一連串的洗禮,從前的單純思想,被不同的價值觀衝擊,在人云亦云當中,顢頇前進,進而迷失,最後跌跌撞撞,尋回自我,而復而回歸單純,體會人生的當下。

對於大學生的生活,以「人生」之名,似乎是有點在扣大帽子。看著剛進大學的小弟,卻也讓我頗有感觸,遂發此文。我也讀過大學,讀過研究所,對於大學裡所教授的事情,我認為可以歸類為三種事情,而這三件事情,也是人生處理萬事時的基石。

只要是台灣的學生,一進大學,常常學長或是學姐就會說個什麼大學必修三學分,課業、社團和愛情。似乎大學生就繞著這三件事情打轉。我認為大學生應當學的三件事情,可以經由課業、社團或是愛情來達到,但卻不是必須。大學四年,如此的黃金歲月,應當是要奠定人生上面更深厚的基礎,乃至於未來獨當一面時,仍不至於惶惶恐恐,如三歲之兒。Mr. Monday認為大學之中應當要學會的三件事情是,獨立思考抽象化定義問題以及解決問題的能力。是的,在我認為所必要學會的三件事情裡面,沒有任何浪漫的成分,而是面對更真實的人生。透過這三件事情的學習,是一個畢業大學生所具備的基礎能力。所以,在我看來,許多人雖然領了文憑畢了業,但是卻缺乏了這三件最基本的能力,那也只是一個徒領了印了文字的紙張,在我看來,他不算讀了大學,應該只是去裡面兜了一圈,然後空手而回。

這三件應當學會的基本能力,事實上是一體的,只是以三個面向來觀看。而有了這三個能力之後,在未來的人生道路上面將會給予你莫大的幫助。

第一個需要培養的是獨立思考的能力。這個能力非常重要,一個沒辦法獨立思考的人,就如同廢了手腳一般,其人生如同無根的浮萍。在生活的週遭,常會看到許多人云亦云的謬誤,又會看見許多自以為是的高論。是的,獨立思考跟剛愎自用通常也只有一線之隔。因此,我所說的獨立思考並不是毫無根據的獨立思考,而必須是基於廣博的學問的獨立思考。所以,在大學期間,理應吸收百家之言,受到不同價值觀念的衝擊,進而自問自答,然而走出自己的一條路。所以,大學生應當像海綿一樣,對知識有著極高的渴望。吸收咀嚼之後,內化成為自身的一部份。因此,培養起獨立思考能力的人,必定有追根究底的精神,對於所有理所當然的事情,都抱持著懷疑的態度,幾番審視之後,細細推敲,最後發覺事物的真實面貌。有了這樣子的能力的人,小則可以解決問題,大則可以體悟人生。

第二個需要的能力是抽象化問題的能力。這跟獨立思考是一體的。如果你沒辦法發現問題,當然你也就沒辦法獨立思考。因為沒有問題,幹什麼還需要思考? 然而,如何針對一個問題來作思考,這就是一個很大的學問了。因為通常在人生的旅途上面,所遇到的問題並不是像教科書一樣,已經把問題列好來了,只等著你來解決問題;人生上面的問題往往比你微積分課本上面的例題還要複雜,而且最重要的是,你還不知道問題的長相。因此,你總需要看清楚問題的本身,將問題的本質抽象化出來,唯有問對了問題,這道難題才會迎刃而解;問錯了問題,就如同拿了錯誤的鑰匙,轉動著錯誤的門鎖,那扇通往真理的大門是永遠不會開啟的。而培養抽象化問題的能力,則必須能夠時時往更高的自我挑戰,也許是藉由社團的活動來慢慢磨練這個能力,或是藉由課業實驗上面的精進來獲取這個能力。一開始定義一個小問題,並多向有能力的學長姐或是師長請益,進而挑戰更高的未知,同能力更高的師長一同討論,最後培養起這種定義問題的能力。這種能力,在人生未來的旅途上面,當你遇到未知之事時,心中將不會有任何恐懼;在身陷迷霧時,你將能為自己照亮該走的路途。

最後一項應該有的能力,也是最重要的能力,就是解決問題的能力。同樣的,同前述兩種能力,這三個是一體的。你可以獨立思考,找到問題的根本,進而清楚定義問題,但最終你還是要解決問題才算是達到圓滿。培養解決問題的能力,需要的不只是知識上面的成長,更需要的是行為上的體現。許多的事情,我們可以藉由許多管道獲得相關的知識,但唯有解決問題這件事情,只有當你自己去面對時,才會發覺在細微之中有其奧妙之處。大體來說,你學到的知識90%可以照著使用,但是總是有著10%的意外,是當你真正投入時,才會發現。那是在所有文字所能描述的外邊,甚至你也無法言語清楚表達這10%的不同,在通俗的名詞裡面,我們賦予它一個名詞叫做「經驗」。因此,你只有在不斷地解決問題之中,才能慢慢地培養出這種能力。

當然,我並不是說,一個剛畢業的大學生,這三種能力就應該鍛鍊到極至無瑕。那這也是無理的要求,因為這三件事情是人生路途上所必須不斷精進的能力,如果這三個能力都已全部圓滿,那人生也就大徹大悟了。因此,這邊所要求的三項基本技能,也是只是基本的程度要求,至於這個基本的程度在哪裡,我相信大家的心中都有一把尺。如果你還沒開始培養起這三種能力,這個問題是個很好的開端。

Posted by Mr. Monday

如果你嫌上廁所時太過無聊的話,這個商品正是為你開發的! 當你在跟你的小臭臭奮戰時,你的大腦也可以同時跟謎題一起奮戰…


圖片來源: Gizmodo

監控Robot-小孩限定

Posted by Mr. Monday

Meccano這家做小孩子玩具遙控車的公司,再今年CES上面推出了一款有WiFi遙控並且可以傳回及時影像的監控玩具Robot-Spyke,此玩具大概會於9月時在歐洲上市,10月時在美國上市,台灣的話,嗯,無限的期待總是美好的。不過這款Robot可真是一點都不便宜啊! 要價390美金。這個價錢,我不如買一個Lego的Mindstorms回來玩好了XD

Posted by Mr. Monday

今年可真是機器人年啊! 喜歡機器人的你不可能不知道史賓吧。好吧,這邊有一張史賓的玉照。

是的,根據Engadget報導,Woowee的機器人家族要進攻麥當勞兒童餐了,一共有八款。期間從2月23號道3月22號,為期一個月,當然…是在美國。

Woowee今年在CES上面還推出一款新的可遙控蜻蜓機器,蜻蜓可以充電,每一次大概可以飛行大約10-15分鐘。售價嘛…50美金…

Posted by Mr. Saturday

瀑布中的一滴水滴,你知道它最終會流過河川、匯入大海,但是此時此刻,你卻難以精確地預測這個水滴下一秒鐘會是在河流或是瀑布中的什麼位置。這個觀察告訴了我們,我們可以看得見長期的趨勢,但是微觀的下一秒鐘,我們卻怎麼樣也難以窺見其變化,因為需要考慮的因素太多:水的流量、地形的細微變化、氣候、溫度等等都讓我們對於一個水滴走向的預測無法精準。當因素太多太多,以至於我們無法掌握時,水滴在某一個瞬間的走向對我們來說就是隨機的。我們只知道:不管這個水滴現在怎麼走,最終它會進入大海。這就是Mr. Saturday這邊想要淺談的隨機現象。隨機現象在我們生活中處處可見,而且深深影響我們的生活,很多不同科學領域的尖端研究,現在都是在對付隨機現象。研究物理的人研究到量子的層次,會發現這個穩固的世界居然是由一些隨機亂跑的粒子所堆砌而成。研究電腦科學的人,會發現隨機方法竟然可以用來設計出簡潔易懂的演算法,研究數學的人,會發現機率模型竟然可以相當程度上幫助我們做出生活中的決策。那麼隨機現象對於我們現實生活中的啟示又什麼呢?以下Mr. Saturday先舉出一個電腦科學界的例子來闡述。

機器學習(Machine Learning)這一個有關人工智慧的學門是電腦科學界最近相當熱門的一個研究領域,主要研究的方向和重點是結合演算法和統計資料,擷取出這些資料之內所隱含的一些資訊,然後用這些擷取出來的資訊讓電腦去對一些事情做預測,以此模擬出類似學習的行為。Machine Learning在近年來取得了巨大的成功,讓曾經一度委靡不振的人工智慧研究又開創了許多新的契機。市面上的各種搜尋引擎就有應用相當多機器學習的技巧在裡面,讓這些搜尋引擎好像真的有智慧,去猜測你要搜尋甚麼東西,然後回傳精準的搜尋結果給你。在這個研究領域中,有一個很重要的現象是每個剛剛學習機器學習的人都會接觸到的:這個現象叫做Overfitting。要講解這個現象之前,我們先舉一個最簡單的例子來介紹機器學習。

如果你要教電腦去找出一個公式,用來計算出身高與體重的關係,那麼你的第一件事情就是收集很多人身高與體重的資料(data),然後跑一個線性迴歸分析(Linear Regression),在身高與體重的平面上找出一條直線去match這些data,這條直線電腦就拿來當作是計算身高體重的公式:你給了電腦身高,電腦就算出體重給你,反之亦然。這是機器學習最簡單的一個例子。電腦所做的事情不過就是從資料看出身高與體重之間的大略關係。之所以說是大略關係,是因為我們讓電腦假設身高與體重的關係完全是線性的,所以我們找了一條直線去當作身高和體重的model:身高越高,體重就越高。但是大家都知道身高和體重不可能剛好是線性的關係,有些人很高但是體重卻很輕,有些人很矮但是體重卻很重。所以當我們用一條直線來解釋這些資料的時候,實際上我們會有一些誤差存在。但是我們知道,以統計上來講,這個趨勢是對的,身高越高的人通常體重會比較重,所以當我們知道了某個人的身高,然後用這條直線去預測那個人的體重時,大部分的時候我們預測出來的結果不會差太遠。

現在有人覺得直線不是一種預測身高體重很好的model,所以想要用比較複雜的曲線來fit這些data,結果他找出了一條完美的曲線來解釋這些data,這條曲線毫無誤差,可以在平面上完全穿過所有資料點。但是這個曲線會出現一個大問題:這條曲線完全沒有辦法拿來預測一個人的體重:你有一個人的身高,然後拿這條曲線去預測這個人的體重,你會發現大部分的時候算出的體重都是相當離譜。而且這條曲線看起來會彎彎曲曲,完全沒有辦法看出身高與體重大致上是呈現線性的關係。這種現象就稱為Overfitting,從字面上的意思來看就是:我們對於資料做了過多的解釋。Overfitting這個現象,在統計學習理論上已經可以用數學來量化,在這邊我們就略過不談。Overfitting給我們最大的啟示就是,不要對你的資料和你看到的現象做過多的解釋

研究哲學的人都知道Occam’s Razor這個原則:當你對一個現象有許多種解釋時,記得選擇最簡單的那一個。這個指導原則在機器學習領域是相當重要的一個概念,很多統計學家和經濟學家會建構相當複雜的模型來詮釋他們的資料,試著去預測以後很多事物的走向。舉例來說LTCM想要做的就是這種事情,兩個諾貝爾獎得主搞出了一套模型,可以保證長期下來,他們的投資絕對穩賺不賠,這群經濟學家以為自己掌握了世界每一秒的趨勢,世界的金錢已經操弄在他們的經濟模型之中,結果最後他們突然倒掉了。為什麼?原因很簡單:因為他們沒有料到蘇聯會忽然解體解體後對於國債的意外處理方式。就這麼一個他們沒有料到的因素(其實當時誰又料得到呢?),就讓他們的模型整個崩潰了。同樣地,搞出越複雜的模型,你就會發現常常這個模型對於解釋新的現象時是不管用的。

反應在我們的生活之中,炒股票的人和那些老師,整天都在跟你講明天股票是會漲還是會跌,他們在做的事情,就是在跟你講瀑布中的水滴下一秒鐘會流到什麼地方。你覺得他們猜得準嗎?你還會相信他們嗎?一群自稱是趨勢專家的人在電視上講得口沫橫飛,說出千萬個理由分析給你聽,要你去買什麼什麼股票。在我看來,他們只是用極有限的知識在跟隨機現象對抗。像預測趨勢這種連那些科學家和統計學家都還做不好的事情,你覺得這些老師做得好嗎?一家公司的股價圖對於人類現在有限的認知而言,完全就是隨機的,你不可能準確預測下一秒鐘準確的走向。股市甚至於連長期的趨勢都難以預測,還記得我們的水滴例子嗎?如果你連長期的趨勢都看不清楚,想要微觀地分析更是難上加難。即使這個世界上沒有真正隨機的事情,一切都是命中注定的,以人類現在有限的知識和電腦的運算能力來說,也還是無法完全掌握的。

同樣的,在股票市場上你會常常看到一些靠股市成為百萬或是千萬富翁的人出書大談自己的投資經,說明自己如何致富,講得真是天花亂墜。我現在舉一個簡單的運算給大家看:假設以你現在的資本,在股市連續賭一支股票十次漲跌,十次都成功,你就可以成為百萬富翁,這樣的機率是多少?既然你每次都是閉上眼睛瞎猜,所以每次的成功率都是一半,連續十次成功就大約是千分之一。看起來連續十次成功真的很難,不過換個角度想,如果台灣有兩百萬人同時做這樣的事情呢?你會發現平均來說,會有兩千人在這十次賭博之中成為百萬富翁,如果這兩千人之中有一些人跑來出書或是上節目大談自己的投資經驗呢?沒錯,他們就變成老師了。隨機現象讓這些人成為百萬富翁,然後這些人以及週遭的人開始用過度解釋和吹捧的方式來大談他們賺錢的成功,最後的結果就是:大家都被隨機現象給唬了。連這些老師自己都相信自己真有一套本領能在股市呼風喚雨。

曾經有一些學者找來一群猩猩做實驗,這些學者把華爾街日報的股票版釘在牆上,讓這些猩猩對那些股票名稱射飛鏢,當作是猩猩建議他們買的股票。結果矇著眼睛的猩猩,朝報紙股票版擲飛鏢所射中的股票,並不比投資專家們的選股遜色。看到這個實驗結果,你作何感想呢?

講了以上這麼多例子,並不是要告訴大家這個世界是隨機的,所以我們做出再多努力也是枉然。人類真正可貴的地方,就在於對這些不確定性所做出的努力,能夠讓人類的智識更推進一步,讓我們更加了解這個世界。談隨機現象只是要提醒大家,很多我們想盡辦法解釋的現象,其實往往都是隨機的結果,這是這個世界運作的機率,確確實實存在,支撐著量子力學,也支撐著我們的現實生活。我們應該做的,是去看整體的趨勢,而不是對於一個短期的現象,鑽牛角尖地想盡辦法去解剖它。解剖的結果就會讓你像量子物理學家一樣,困惑地發現井然有序的世界,竟然是由一些到處亂跑的粒子組成。長期的趨勢是可以透過努力研究在一定程度上達到預測的效果,短期趨勢是誰也說不準。

隨機現象本身是一個相當深奧的議題,談到最後往往都會淪為「上帝究竟丟不丟骰子?」的哲學議題, 人類也許永遠都無法了解這個世界是不是一切都命中注定,抑或是人總是可以隨時透過外在力量改變一些事物的隨機世界。無論是怎麼樣,努力之後得來的果實永遠都是甜美的。只是要記住,別被一些人解釋隨機現象的嘴砲所唬了,好像這些隨機現象真的像他們講的那樣完全可以預測。

別把隨機當必然

Posted by Mr. Monday

IdeaGrapes上看到一則介紹,討論所謂的「點3下原則」(the 3-click rule)。我對HCI(Human Computer Interaction)這類的話題,一向都很有興趣。所謂的三下定律是說,使用者在一個網站上點三下之後,若是發現不到自己要找的資訊,就會忿而離去。

UIE則做了個測驗反駁這樣子的說法。報告指出使用者在點擊網頁中的內容時,如果離自己期望的目標越來越近時,他們不會在意多點擊個幾下的。所以,三的法則不攻而破了,但是這個結論倒值得注意,尤其是對開發軟體產品的大家來說。

資料來源: IdeaGrapes網站

老闆…你忘了…

Posted by Mr. Monday

下次幫你老闆拍宣傳照時,請記得該接的線還是要接的,除非你是有意的XD

圖片來源: Crazy.codetroop.com