Category Archive for '專欄'

Posted By Mr. Thursday 當我們吃完飯沒付錢就走出餐廳,餐廳老闆可能會追出來。當我們撘公車沒有付車錢,公車司機可能會追下來。大賣場可能會有試吃,可是如果我們帶了一碗白飯,一邊把試吃的東西當成配料,大賣場的老闆可能也會走出來了。免費的東西,在生活中似乎不多見,至少大部分的東西,尤其是實體的東西,像是吃的穿的,和需要人力的服務,都還不是免費的。然而數位內容或是資訊服務,因為複製成本和網路散佈成本的下降,變成幾乎是免費的。對消費者來說,免費當然好,可是對內容提供者來說,這就不好了! 現行的解決方式有廣告的商業模式(business model),也就是說,消費者仍然免費取得內容,但是會收看廣告,另一方面,內容提供者則是由廣告商或得收益。其他方式還包括和硬體一起銷售,或是和網路業者拆帳。然而上面這些方式,總歸一句話,就是讓消費者的錢,從其他入口進來,無論是廣告商、硬體製造商、或是網路電信業者。然而除了讓收入轉個彎從其他地方進來,是否還有其他商業模式,讓消費者免費取得內容,讓複製成為合情合理的事情,卻也不會讓數位內容的產業消失呢?在這邊我提出一個想法和各位分享,也許還不行的通,但是可以繼續腦力激盪,或許可以有更好的商業模式可以一起思考出來!

Read Full Post »

現在你的眼前有三扇門1 2 3 ,其中一扇門背後的是巨額獎金,另外兩扇門的背後則是「很感謝你參加這個遊戲,祝你下次好運」,遊戲主持人示意你選擇其中一扇。在主持人和觀眾的喧鬧聲之中,你戰戰兢兢地選擇了1號 。這個時候遊戲主持人問︰「你真的要選擇1號門嗎?」你說︰「是的。」在這個時候,遊戲主持人沒有立刻揭盅,他把2號門打開了,你很緊張的往裡面看,幸而2號門並沒有你在造夢時也想得到的獎金,正當你鬆一口氣的時候,主持人對你說︰「我現在給你多一次機會,你要堅持選你的1號門,還是轉為選3 號門呢?」 這個便是十分有名的Monty Hall problem,這個名字來自當年美國一個類似遊戲的節目主持Monty Hall。 你會怎麼選?

Read Full Post »

網路的快速發展,大大地衝擊了傳統行銷。這是一個難以抵擋的趨勢,業者應該要發展出更多元化且合乎消費者需求的商業模式,滿足各種消費者的需求,才能在這個時代獲得最大利益。譬如超級星光大道歌唱節目獲得巨大成功後,仍一步步學習善用網路等資源,現在超級星光大道的官方網站與選手的部落格也成為重要的節目幕後內涵 [8];KTV已經發展為頗成熟的獲利方式,而線上KTV也蓄勢待發;與影音網站 YouTube 簽署授權條款 [9];當代流行音樂的實體 CD 模式也很可能會變成小眾的市場 [10]。此外,現在美國以販售 DRM-free 單曲音樂為主力的 amazon,開發出許多非 iTunes 用戶 [11],可簡單印證不同形式的市場確實可疊加出更大的利益。

Read Full Post »

算術平均數(下)

在算術平均數(上)文中,我一開始便說算術平均數(Arithmetic mean)是以刪掉資訊來換取簡潔的表達,但文中只簡單提及了在用平均數時我們失去了方差(Variance)的資訊,這次就讓大家看看平均數在不同的情況下,分別刪掉了什麼吧。 還記得Windows XP 和Mac OS X的例子嗎?如果你為你的程式在Windows XP 和Mac OS X 的環境下分別進行了1000次測試,得出的結果是︰在Windows XP中程式運行所需時間平均30秒,而在Mac OS X中則平均10秒。當有人問及你相關的資料時,你可以有以下三種回答方法︰ (1)XP 第1次︰32秒,XP第2次︰29 秒,XP第3次︰31秒…..OS X 第1次︰8秒,OS X第2次︰12 秒………………………(把所有測試的結果通通列出來) (2)OS X 的1000 次測試中,平均時間10 秒,Windows XP 的1000 次測試中,平均時間30秒 (3)在Windows XP 和Mac OS X 的2000 次測試中,平均時間20 秒。 有看算術平均數(上)的讀者們,應該知道我又想說「(3) 的資訊比(2)少,(2)的資訊比(1)少」和「三個答案沒有誰對誰錯,答哪一個才好是取決於對方想要什麼」但如果我們是知道對方想要什麼資料的話,這三個答案便有好壞之分。

Read Full Post »

算術平均數(上)

統計學工具,可以協助我們把多餘的資訊刪減,令人們可以更清楚方便地看到他們需要的資訊。以大家一定懂得的「算術平均數」(Arithmetic Mean)為例,如果你編寫了一個改圖程式,為了測試它的速度。你在不同的環境,不同的時間,重複運行某功能1000次,然後把所需時間記下來。這個時候,如果有人問及你一些有關你的程式的運行速度的資料,你可以把你的測試告訴他。在報告測試結果的時候,你可以選擇說︰ 1. 第1次︰38秒,第2次︰36秒,第3次︰37秒,第4次︰38秒….(把所有記下來的時間讀出來)……….. 或 2. 平均運行時間是37秒。 這兩個答案沒有誰對誰錯,要回答哪一個就取決於對方想要什麼?想要仔細的資訊?還是想要一個簡潔,但又具代表性的數字?但可以肯定的是,2.的資訊比1. 的要少。因為如果我得到1. 中的資訊,我可以把2.所提及的平均數計出來,但我只知道2.的話,卻不可以把1.的資料計出來。換句話說,為了換取簡潔,我們使用「平均數」這個工具,把一些我們認為是多餘的資訊刪去了。 讀者可能會說,這只是小朋友都懂的算術題,有必要說得這樣複雜嗎?如果這些說話只是在一般朋友間的對話中,可能問題不大,反正大家在很多時候都只是想看個大概,細節上有什麼誤解也無傷大雅。但當這些平均數被廣泛用在廣告、公共資訊(如天氣預告)和資訊紀綠(如成績單)中,我們就得費點工夫去了解,這些平均數是在說些什麼了,或者他們刪除了什麼了。

Read Full Post »

Posted By Mr. Thursday 各位經過理髮店的時候,或許都會注意到理髮店有一個捲軸,捲軸不停旋轉,但是看起來會像是有一圈圈的條紋往上移動。今天要和各位介紹的是另外一個類似的錯覺,叫做「孔徑問題」 (Aperture Problem)。 圖1 理髮店捲軸錯覺 何謂孔徑問題呢?我們可以先看看下面這個動畫: 圖2 孔徑問題 (Aperture Problem) 我們可以看到,中間有一個圓圈,我們透過這個圓圈,會看到有斜線,沿者「右下」的方向移動。然而如果要造成這種視覺效果,卻有三種可能。第一種可能是一個「橫向」的紙條,往「正右方」拉動,但是紙條上面有「斜線條紋」,因此透過孔徑來看的時候,會有錯覺。第二種可能是一個「直向」的紙條,往「正下方」移動,但是因為紙條上面有「斜線條紋」,因此透過孔徑來看的時候,還是感覺往右下方移動。第三種可能是一張紙條,上面有著「直線條紋」,但是往「右下方」移動,因此透過孔徑觀看的時候,會和前面兩個看到的移動方向一樣。 因此雖然三張紙條「移動方向」不同,甚至紙條上面「條紋的方向」也不盡相同,但是透過孔徑來觀察的時候,卻都會有條紋移動方向相同的錯覺。這就是「區域 (local)」 和「 全域 (global)」 視覺處理的差別。我們的視覺系統區域上 (locally) 可以有孔徑問題的錯覺,但是當我們觀察的範圍是全域 (globally)的時候,卻又分析的出來三張紙條不同的移動方向。我們的視覺系統怎樣子達成這樣子的功能呢?

Read Full Post »

改版,是一件很嚴肅的挑戰。如果沒有必要的話,就不應該大幅更動版面,而是小幅度的改變。因此,在設計出代的產品的時候,就應該要格外用心。使用者需要被尊重,而對使用者最親切的介面就是,”那些按鈕就應該在它們所該在的地方才是”。

Read Full Post »