Category Archive for 'Mr. Thursday'

Posted By Mr. Thursday 今天上網尋找東西或資訊,無論是用Google還是Yahoo,我們用的都是關鍵字 (keyword) 搜尋。關鍵字搜尋對一些專有名詞的資訊搜尋效果不錯,然而有時候我們只知道比較廣泛的概念,想要找比較詳細的資訊卻不知道該下什麼關鍵字,或著是同義字很多,像是 Apple是指水果的蘋果,還是蘋果電腦?或是我們想用自然語言的問句,來界定我們關鍵字的上下文意義,避免找到有這個關鍵字,應用情境 (context) 卻不是想要尋找的情況。「語意搜尋引擎」想要達成的目標就是如此,當少數關鍵字的意思並不明確,無法清楚定義出情境 (context) 或是排除同義字,或是想從廣泛的概念搜尋比較詳細特定的概念,就可以運用語意搜尋引擎來找找。 目前有哪些搜尋引擎呢?針對 Wikipedia 內容來做語意搜尋的搜尋引擎有 Powerset 和 Cognition,Cognition除了包含Wikipedia的內容外,也針對法律 (legal) 內容和醫學 (medicine) 內容做搜尋。Hakia 則是針對整個網路的內容做語意搜尋。除此之外,最近也有 Evri 這個語意搜尋引擎,使用類似資料庫裡面 entity-relationship (ER) 的瀏覽方式,讓使用者可以根據事情之間意義上的關係,從一個網頁連到另外一個網頁,讓超連結 (hyperlink) 不是只有關鍵字的連結,而是經由事物的屬性意義的連結。下面就讓我們先看一下這些搜尋引擎的 DEMO 吧! 影片1 Powerset demo

Read Full Post »

Posted By Mr. Thursday 在之前有寫了一些神經科學相關的文章,有些是偏向認知心理的,有些是偏向細胞分子的,或是偏向視覺處理的。神經科學的研究,我本身的是以人工智慧作為出發點,往神經科學研究方向進行。至於為什麼要在人工智慧以外加上神經科學呢?這兩者似乎有一點距離?原來資訊工程的技術是否已經足夠了呢? 這邊我提出幾點研究的動機。首先,目前的機器學習的方式,和人類學習的方式比較起來,有個最大的不同,就是我們人類可能從上課或是閱讀當中自我學習,或是由外在環境給予的經驗來學習。機器同樣也是接收外界的刺激,調整自己的反應來學習,然而機器學習過程當中,有時候會需要滿多人類的介入,譬如說調整參數、調整模型或演算法等等。如果用類比的方式來說,目前機器學習的方式如果用到人上面,就像是把人的腦蓋打開,調整裡面的神經連結,關起來以後再讓人腦跑跑看有沒有學習到。其實這種方式學習也沒有什麼不好,因為機器的目標,其實是服務人類,學習的東西有學到,怎樣子學習到就不那麼重要了。 那麼機器目前學習的情況如何呢?其實目前的電腦和機器算是滿先進的,加上運算速度快,純粹數字計算的能力就比人類心算能力還快,許多應用服務也讓人類生活改善不少。然而有些比較難處理的問題,像是需要人類智能才能完成的問題,譬如說翻譯、圖形辨識、影像辨識、語音辨識、語意了解等等,這些都算是人工智慧 (Artifitial Intelligence 人工智能) 所需要解決的問題,這些問題的解決,沒有隨著硬體速度的增加而解決,因此軟體上面的進步,就是關鍵了!目前對於這些難以解決的方式,有兩種解法:(1) 運用大量的訓練資料,譬如說Google翻譯,使用大量的訓練資料,或是PDA的手寫辨識,大量的訓練資料都讓正確率大大提升。(2) 運用人工運算 (Human Computing) 結合Web2.0的方式,提供人性化的介面,讓每個人在趣味中貢獻微小的人類智力,解決一些大量資料也無法解決的東西,譬如說reCAPTCHA、語意辨識、圖形的ROI (region of interest) 等等。

Read Full Post »

Posted by Mr. Thursday 之前曾經介紹過〈海扁學習與神經網路的同步化〉,今天則是要和各位介紹和長期記憶相關的一個腦部結構,叫做「海馬迴」。「海馬迴」英文稱為 hippocampus,是從希臘文字根 hippos (馬) + kampos (海怪)而來的。 圖1 海馬迴在人腦裡面的位置  海馬迴重要在哪裡呢?主要是因為海馬迴和我們形成長期記憶的過程有關。怎樣子曉得和長期記憶有關呢?最重要的是因為在1953年,有一為病人,名字縮寫為H.M. (Henry M.) ,因為一直為癲癇 (epilepsy) 所苦,因此醫生決定為他開刀,把癲癇的來源,也就是腦部顳葉 (temporal lobe) 的地方,摘除掉。這個部分剛好也就是海馬迴的地方,因此他的左右的海馬迴、以及杏仁核 (amygdala, 負責情緒功能的區域),也被摘除掉了。 手術之後,病人H.M.好像恢復正常,不再癲癇。但是,他開始產生嚴重的失憶症,手術往前一部分時間的記憶消失,手術後無法形成新的長期記憶。人沒有長期記憶的功能,是非常不容易生活下去的!醫師發現這個情況以後,也就在沒有其他醫生會使用這種切除海馬迴的方式來治療癲癇了。對於科學研究來說,我們則是順便從這個病例,了解到海馬迴具有形成長期記憶的功能,詳細迴路可能還不知道,但是至少知道如果整個海馬迴摘掉,就無法形成長期記憶,因此非常重要! 下面是另外一張海馬迴的立體位置圖:(尋找hippocampus的地方) 圖2 海馬迴位置圖

Read Full Post »

Posted By Mr. Thursday MIT News前陣子有一篇報導,敘述有一些和認知語言有關的研究。他們主要是研究南美洲一些原住民部落的語言,主要是巴西的西北部一個叫做Piraha的部落。在那邊除了研究語言之外,也研究該部落的語言,對於數字的概念是如何?他們發現到一個有趣的現象,就是在Piraha這個部落的語言裡面,對於數字的觀念非常模糊,幾乎沒有精確的數字描述。譬如說研究者請他們從1數到10,或是從10數到1,結果用他們的語言,1和2兩個字都有,但是數到3以上,都是同一個單字。也就是說,他們對於數字的觀念,只有「1」、「2」、和「很多」這三種區別。(圖: Edward Gibson教授) 就我們的工作記憶(working memory) 來講,的確也是有類似的現象,譬如說我們印象深刻的數字,第一個大概是「3」,大於「3」的數字,我們比較不容易捕捉其概念。舉個例子來說,中文字的1是「一」,2是「二」,3是「三」,但是4呢?就不是四條橫線了!又另外一個數字比較印象深刻的,大概是7。不是因為7乘以4等於28天,也不是一個禮拜剛好七天,而是因為工作記憶的容量,通常就在7到8位數字左右,觀察一下我們的電話號碼,你說手機有10位數字,但是開頭兩位可能都是固定的,所以其實只要記住8位數字就好,室內電話最多也是8位數,第一位數有時候也是固定的。如果要再科學一點,我們也可以用實驗的方式,來證實工作記憶的儲存容量,對一般人來說就是7到8位數。譬如說亂數唸出一堆數字,然後請受試者寫下記得的數字,一般人大概最多回憶到7組數字 (如果兩個數字一組,7組數字就是14個數字,也就是7個二位數的數字)。 而這則新聞和認知科學上面對工作記憶的發現,也讓我產生了一個大膽的假設,或許有興趣的話,可以實驗來證明一下。我的假設是說:人類數字功能,是一種類似「繞道」而行的方式產生,也就是說數字功能可能不是天生的,但是後天可以勤能補拙,產生數字的功能。為什麼會這樣子假設呢?

Read Full Post »

iphone立體貓

Posted By Mr. Thursday David OReilly運用 anamorphosis 的技術 (古代把物體畫成變形的圖案,透過特殊鏡片或角度才能看到原貌的繪圖技術),將他原本的動畫呈現在iphone上面,但是會因為觀看角度的關係,讓人以為這隻小貓是立體的,而且還可以透過觸控螢幕來移動動畫的觀賞角度呢!實在是非常神奇的創作!   iHologram – iPhone application from David OReilly on Vimeo. 資料來源 (The Next Web) See that little creature? It’s a iPhone holographic illusion

Read Full Post »

Posted By Mr. Thursday 免疫系統對我們實在是非常重要。之前介紹過的病毒,或是生活環境中都有許多細菌,甚至身體裡面也會自己長出癌細胞,但是因為有了免疫系統,我們可以在一定程度下保持自己的健康,除此之外,我們得過一種疾病之後,還會記住這個疾病,第二次的免疫反應會更大更迅速,讓我們有「免疫」的表現。或者透過疫苗的方式,我們也不需要得過一次病,就可以「免疫」了!然而我們的免疫系統,是如何運轉的呢?除了白血球 (可以細分為4種今天不談) 提供身體一般非特定性的免疫功能,對每一種疾病特定的免疫反應,則是透過身體裡面的兩種淋巴細胞來反應,分別是B細胞和T細胞。為什麼叫做B細胞和T細胞呢?是因為他們喜歡用 BT 下載影片嗎?No No No! B細胞是因為他是在骨髓 (bone marrow) 裡面成熟,所以稱為B細胞, T細胞是因為他是在胸腺 (thymus) 成熟,所以稱為T細胞。 圖1 淋巴細胞(lymphocyte)與樹狀白血球細胞(dendritic cell) B細胞和T細胞如何在身體裡面清除病原,讓身體保持健康呢?這邊有另外兩個主角,就是抗原和抗體 (antigen and antibody)。抗原是病菌或病毒上面某個可以被辨認的蛋白質片段,而抗體就是免疫細胞上面,可以專門來辨認和結合抗原的部分,抗原和抗體,就有如鑰匙和鎖的關係,而且具有特定性,一個抗體就只辨認一種抗原。B細胞和T細胞的差別,可以從他們細胞膜上面的抗體來分別。 圖2 抗原 (antigen) 與 抗體 (antibody) 每個T細胞或B細胞上面有許多抗體 (antibody),就像上面那張圖裡面紫色的部分一樣,每個細胞有很多個抗體,但是同一個細胞表面的抗體會全部都一樣,也就是說抗體有很多種,但是一個B細胞或T細胞上面,只有一種抗體分布在上面。而一個抗原(antigen)則會有許多小部分 (epitopes) 可以讓某一個特定的抗體所辨認,所以一個抗原,有時候會需要三個抗體才能完全被辨認和結合。 抗體結合到抗原上面,就表現出免疫的作用了,譬如說病毒如果被抗體辨認,然後結合起來,病毒原來可以侵入細胞的區域,可能就被抗體給佔據,因此病毒就無法再入侵健康的細胞了。對於已經被感染的細胞,或是外來的病菌,抗體則是有另外一種作用,簡單地說,是一種把抗原標示起來的作用,讓免疫系統其他組成份子可以確定摧毀的目標。整個故事怎麼走呢?下面就來慢慢解釋。

Read Full Post »

Posted By Mr. Thursday 下面的FLASH是由 Arthur Shapiro 所製作的視覺錯覺。原本固定形狀的花朵,加上邊緣的線條,就會開始規律地扭轉,好像在呼吸一樣呢! FLASH1 呼吸的花 Arthur Shapiro會在他的blog每天製作一個視覺的錯覺 (Visual Illusion)。也許會納悶,怎麼人的視覺系統會產生錯覺呢?這樣子不就不大好?其實我們也可以說,因為人類視覺系統如此特別,所以可以輕鬆地辨識物體,尤其在切割兩個重疊的影像的時候,我們可以很輕鬆地把同一盤菜裡面的菜和湯分開來,如果要用電腦來處理,目前仍然無法很容易地進行。 其中部分原因,是因為我們的視覺系統是用對比的訊號 (contrast),而不是像電腦的編碼,儲存的時候是用點陣圖的方式儲存,對比的資訊需要另外計算。電腦似乎就是用「絕對」的方式來處理視覺資訊,而人腦就是用一種「相對」的方式來處理視覺資訊,因此對電腦來說不容易的視覺工作,人腦是非常容易辦到,不過也因此會有副產品的產生,就是視覺上的錯覺了。之前曾經介紹的Ebbinghaus Illusion,就是可以說明我們使用相對資訊來處理視覺,因而產生錯覺的例子,您看!中間兩個圓圈是一樣大的,但是因為週遭圓圈大小不同,我們相對的視覺系統,就產生大小不同的錯覺了。 圖1 ebbinghaus illusion 除了「相對」的處理方式是人腦和電腦有所不同的地方,「平行計算」是另一個可以比較的地方。不過無論是電腦或是人腦,都會有平行計算,因此今天想探討的是另外一個問題,請各位先觀察一下下面這張圖片: 圖2 人腦XOR 這個圖片是由 Mark Changizi 所製作的,主要的想法是希望能夠利用人腦平行計算的能力,來解決一些邏輯上的運算。譬如說上面這張圖,是希望在圖的最上方可以放0或1,0的盒子會遠離觀賞者,1的盒子看起來會朝向觀賞者。接著觀賞著沿著這張設計好的圖,運用人腦的平行計算能力,看到圖片最下方的地方,如果感覺是朝向觀賞者,就說是1,如果最下面看起來是遠離觀賞者,就說是0。而這張圖的設計,可以讓觀賞者自然地從上面看到下面的時候,做了一個XOR (exclusive OR) 的運算。 不過我想探討的問題就是:平行計算應該是發生在運算初期的部分,無論是人腦還是電腦的平行計算。

Read Full Post »

頁次 5 of 1612345678910...最後一頁 »